Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.142
Filtrar
1.
Nat Commun ; 15(1): 3210, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615070

RESUMO

Cross-reactive antibodies with Fc receptor (FcR) effector functions may mitigate pandemic virus impact in the absence of neutralizing antibodies. In this exploratory study, we use serum from a randomized placebo-controlled trial of seasonal trivalent influenza vaccination in children (NCT00792051) conducted at the onset of the 2009 H1N1 pandemic (pH1N1) and monitored for infection. We found that seasonal vaccination increases pH1N1 specific antibodies and FcR effector functions. Furthermore, prospective baseline antibody profiles after seasonal vaccination, prior to pH1N1 infection, show that unvaccinated uninfected children have elevated ADCC effector function, FcγR3a and FcγR2a binding antibodies to multiple pH1N1 proteins, past seasonal and avian (H5, H7 and H9) strains. Whereas, children that became pH1N1 infected after seasonal vaccination have antibodies focussed to seasonal strains without FcR functions, and greater aggregated HA-specific profiles for IgM and IgG3. Modeling to predict infection susceptibility, ranked baseline hemagglutination antibody inhibition as the highest contributor to lack of pH1N1 infection, in combination with features that include pH1-IgG1, H1-stem responses and FcR binding to seasonal vaccine and pH1 proteins. Thus, seasonal vaccination can have benefits against pandemic influenza viruses, and some children already have broadly reactive antibodies with Fc potential without vaccination and may be considered 'elite influenza controllers'.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estudos Prospectivos , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G
2.
Front Cell Infect Microbiol ; 14: 1346349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628551

RESUMO

Efficient precision vaccines against several highly pathogenic zoonotic viruses are currently lacking. Proteolytic activation is instrumental for a number of these viruses to gain host-cell entry and develop infectivity. For SARS-CoV-2, this process is enhanced by the insertion of a furin cleavage site at the junction of the spike protein S1/S2 subunits upstream of the metalloprotease TMPRSS2 common proteolytic site. Here, we describe a new approach based on specific epitopes selection from the region involved in proteolytic activation and infectivity for the engineering of precision candidate vaccinating antigens. This approach was developed through its application to the design of SARS-CoV-2 cross-variant candidates vaccinating antigens. It includes an in silico structural analysis of the viral region involved in infectivity, the identification of conserved immunogenic epitopes and the selection of those eliciting specific immune responses in infected people. The following step consists of engineering vaccinating antigens that carry the selected epitopes and mimic their 3D native structure. Using this approach, we demonstrated through a Covid-19 patient-centered study of a 500 patients' cohort, that the epitopes selected from SARS-CoV-2 protein S1/S2 junction elicited a neutralizing antibody response significantly associated with mild and asymptomatic COVID-19 (p<0.001), which strongly suggests protective immunity. Engineered antigens containing the SARS-CoV-2 selected epitopes and mimicking the native epitopes 3D structure generated neutralizing antibody response in mice. Our data show the potential of this combined computational and experimental approach for designing precision vaccines against viruses whose pathogenicity is contingent upon proteolytic activation.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas Virais/genética , Epitopos/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Med Virol ; 96(4): e29598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624044

RESUMO

We estimated the dynamics of the neutralizing response against XBB sublineages and T cell response in persons with HIV (PWH) with previous AIDS and/or CD4 < 200/mm3 receiving the bivalent original strain/BA.4-5 booster dose in fall 2022. Samples were collected before the shot (Day 0), 15 days, 3, and 6 months after. PWH were stratified by immunization status: hybrid immunity (HI; vaccination plus COVID-19) versus nonhybrid immunity (nHI; vaccination only). Fifteen days after the booster, 16% and 30% of PWH were nonresponders in terms of anti-XBB.1.16 or anti-EG.5.1 nAbs, respectively. Three months after, a significant waning of anti-XBB.1.16, EG.5.1 and -XBB.1 nAbs was observed both in HI and nHI but nAbs in HI were higher than in nHI. Six months after both HI and nHI individuals displayed low mean levels of anti-XBB.1.16 and EG.5.1 nAbs. Regarding T cell response, IFN-γ values were stable over time and similar in HI and nHI. Our data showed that in PWH, during the prevalent circulation of the XBB.1.16, EG.5.1, and other XBB sublineages, a mRNA bivalent vaccine might not confer broad protection against them. With a view to the 2023/2024 vaccination campaign, the use of the monovalent XBB.1.5 mRNA vaccine should be urgently warranted in PWH to provide adequate protection.


Assuntos
COVID-19 , Infecções por HIV , Humanos , COVID-19/prevenção & controle , Programas de Imunização , RNA Mensageiro , Estações do Ano , Vacinas de mRNA , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Nat Commun ; 15(1): 3128, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605096

RESUMO

One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas , Animais , Coelhos , Feminino , Lipossomos , Anticorpos Neutralizantes , Fosfolipídeos , Anticorpos Anti-HIV , Imunização , Produtos do Gene env do Vírus da Imunodeficiência Humana
5.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607077

RESUMO

Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.


Assuntos
Vírus da Influenza A , Influenza Humana , Vacinas , Animais , Camundongos , Humanos , Linfócitos T CD4-Positivos , Anticorpos Neutralizantes
6.
Nano Lett ; 24(15): 4423-4432, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568019

RESUMO

The HIV-1 envelope is a heavily glycosylated class 1 trimeric fusion protein responsible for viral entry into CD4+ immune cells. Developing neutralizing antibodies against the specific envelope glycans is an alternative method for antiviral therapies. This work presents the first-ever development and characterization of artificial neutralizing antibodies using molecular imprinting technology to recognize and bind to the envelope protein of HIV-1. The prepared envelope glycan-imprinted nanoparticles (GINPs) can successfully prevent HIV-1 from infecting target cells by shielding the glycans on the envelope protein. In vitro experiments showed that GINPs have strong affinity toward HIV-1 (Kd = 36.7 ± 2.2 nM) and possess high anti-interference and specificity. GINPs demonstrate broad inhibition activity against both tier 1 and tier 2 HIV-1 strains with a pM-level IC50 and exhibit a significant inhibitory effect on long-term viral replication by more than 95%. The strategy provides a promising method for the inhibition and therapy of HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Neutralizantes , Anticorpos Anti-HIV/metabolismo , Glicosilação , Infecções por HIV/tratamento farmacológico , Polissacarídeos/metabolismo
7.
Sci Rep ; 14(1): 7709, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565882

RESUMO

The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Humanos , Adulto , Anticorpos Neutralizantes , Interleucina-10 , Anticorpos Antivirais , Fator de Necrose Tumoral alfa , Linfócitos T CD8-Positivos , Vacinação
8.
Front Cell Infect Microbiol ; 14: 1381877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572316

RESUMO

Most of vaccinees and COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, which helps preventing infection and alleviating symptoms. However, breakthrough viral infections caused by emerging SARS-CoV-2 variants, especially Omicron subvariants, still pose a serious threat to global health. By monitoring the viral infections and the sera neutralization ability of a long-tracked cohort, we found out that the immune evasion of emerging Omicron subvariants and the decreasing neutralization led to the mini-wave of SARS-CoV-2 breakthrough infections. Meanwhile, no significant difference had been found in the infectivity of tested SARS-CoV-2 variants, even though the affinity between human angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) of tested variants showed an increasing trend. Notably, the immune imprinting of inactivated COVID-19 vaccine can be relieved by infections of BA.5.2 and XBB.1.5 variants sequentially. Our data reveal the rising reinfection risk of immune evasion variants like Omicron JN.1 in China, suggesting the importance of booster with updated vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Infecções Irruptivas , Estudos de Coortes , Evasão da Resposta Imune , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
Front Cell Infect Microbiol ; 14: 1358967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572318

RESUMO

Introduction: The aim of this study is to investigate changes in TNF-related apoptosis-inducing ligand (TRAIL) and gamma interferon-induced protein 10 (IP-10) after COVID-19 vaccination in pregnant women and to explore their association with neutralizing antibody (Nab) inhibition. Methods: The study evaluated 93 pregnant women who had previously received two (n=21), three (n=55) or four (n=17) doses of COVID-19 vaccine. Also we evaluated maternal blood samples that were collected during childbirth. The levels of TRAIL, IP-10 and Nab inhibition were measured using enzyme-linked immunosorbent assays (ELISA). Results and discussion: Our study revealed four-dose group resulted in lower TRAIL levels when compared to the two-dose and three-dose groups (4.78 vs. 16.07 vs. 21.61 pg/ml, p = 0.014). The two-dose group had reduced IP-10 levels than the three-dose cohort (111.49 vs. 147.89 pg/ml, p=0.013), with no significant variation compared to the four-dose group. In addition, the four-dose group showed stronger Nab inhibition against specific strains (BA.2 and BA.5) than the three-dose group. A positive correlation was observed between TRAIL and IP-10 in the two-dose group, while this relationship was not found in other dose groups or between TRAIL/IP-10 and Nab inhibition. As the doses of the COVID-19 vaccine increase, the levels of TRAIL and IP-10 generally increase, only by the fourth dose, the group previously vaccinated with AZD1222 showed lower TRAIL but higher IP-10. Despite these changes, more doses of the vaccine consistently reinforced Nab inhibition, apparently without any relation to TRAIL and IP-10 levels. The variation may indicate the induction of immunological memory in vaccinated mothers, which justifies further research in the future.


Assuntos
COVID-19 , Interferons , Gravidez , Humanos , Feminino , Vacinas contra COVID-19 , Quimiocina CXCL10 , Ligante Indutor de Apoptose Relacionado a TNF , Gestantes , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
J Med Virol ; 96(4): e29581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572939

RESUMO

The World Health Organization classified Crimean-Congo hemorrhagic fever (CCHF) as a high-priority infectious disease and emphasized the performance of research studies and product development against it. Little information is available about the immune response due to natural CCHF virus (CCHFV) infection in humans. Here, we investigated the persistence of IgG and neutralizing antibodies in serum samples collected from 61 Iranian CCHF survivors with various time points after recovery (<12, 12-60, and >60 months after disease). The ELISA results showed IgG seropositivity in all samples while a pseudotyped based neutralization assay findings revealed the presence of neutralizing antibody in 29 samples (46.77%). For both IgG and neutralizing antibodies, a decreasing trend of titer was observed with the increase in the time after recovery. Not only the mean titer of IgG (772.80 U/mL) was higher than mean neutralizing antibody (25.64) but also the IgG persistence was longer. In conclusion, our findings provide valuable information about the long-term persistence of humoral immune response in CCHF survivors indicating that IgG antibody can be detected at least 8 years after recovery and low titers of neutralizing antibody can be detected in CCHF survivors.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Anticorpos Neutralizantes , Irã (Geográfico) , Imunoglobulina G , Anticorpos Antivirais
11.
J Med Virol ; 96(4): e29585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566585

RESUMO

Natural Killer (NK) cells play a significant role in the early defense against virus infections and cancer. Recent studies have demonstrated the involvement of NK cells in both the induction and effector phases of vaccine-induced immunity in various contexts. However, their role in shaping immune responses following SARS-CoV-2 vaccination remains poorly understood. To address this matter, we conducted a comprehensive analysis of NK cell phenotype and function in SARS-CoV-2 unexposed individuals who received the BNT162b2 vaccine. We employed a longitudinal study design and utilized a panel of 53 15-mer overlapping peptides covering the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein to assess NK cell function at 0 and 20 days following the first vaccine, and 30 and 240 days following booster. Additionally, we evaluated the levels of total IgG anti-Spike antibodies and their potential neutralizing ability. Our findings revealed an increased NK cell activity upon re-exposure to RBD when combined with IL12 and IL18 several months after booster. Concurrently, we observed that the frequencies of NKG2A + NK cells declined over the course of the follow-up period, while NKG2C increased only in CMV positive subjects. The finding that NK cell functions are inducible 9 months after vaccination upon re-exposure to RBD and cytokines, sheds light on the role of NK cells in contributing to SARS-CoV-2 vaccine-induced immune protection and pave the way to further studies in the field.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2 , Vacina BNT162 , Estudos Longitudinais , COVID-19/prevenção & controle , Vacinação , Células Matadoras Naturais , Anticorpos Antivirais , Anticorpos Neutralizantes
12.
Nat Commun ; 15(1): 3102, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600072

RESUMO

Several studies have suggested the imprinting of SARS-CoV-2 immunity by original immune challenge without addressing the formation of the de novo response to successive antigen exposures. As this is crucial for the development of the original antigenic sin, we assessed the immune response against the mutated epitopes of omicron SARS-CoV-2 after vaccine breakthrough. Our data demonstrate a robust humoral response in thrice-vaccinated individuals following omicron breakthrough which is a recall of vaccine-induced memory. The humoral and memory B cell responses against the altered regions of the omicron surface proteins are impaired. The T cell responses to mutated epitopes of the omicron spike protein are present due to the high cross-reactivity of vaccine-induced T cells rather than the formation of a de novo response. Our findings, therefore, underpin the speculation that the imprinting of SARS-CoV-2 immunity by vaccination may lead to the development of original antigenic sin if future variants overcome the vaccine-induced immunity.


Assuntos
Infecções Irruptivas , Vacinas , Humanos , Vacinação , Epitopos , SARS-CoV-2 , Imunidade , Anticorpos Antivirais , Anticorpos Neutralizantes
13.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587080

RESUMO

BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).


Assuntos
Anticorpos Neutralizantes , Sprays Nasais , Animais , Cricetinae , Humanos , China , Traqueia , Voluntários Saudáveis
14.
Hum Vaccin Immunother ; 20(1): 2330168, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38567541

RESUMO

Human papillomavirus (HPV) vaccines, primarily relying on neutralizing antibodies, have proven highly effective. Recently, HPV-specific antibodies have been detected in the female genital tract secretions captured by first-void urine (FVU), offering a minimally invasive diagnostic approach. In this study, we investigated whether HPV16-specific antibodies present in FVU samples retain their neutralizing capacity by using pseudovirion-based neutralization assays. Paired FVU and serum samples (vaccinated n = 25, unvaccinated n = 25, aged 18-25) were analyzed using two orthogonal pseudovirion-based neutralization assays, one using fluorescence microscopy and the other using luminescence-based spectrophotometry. Results were compared with HPV16-specific IgG concentrations and correlations between neutralizing antibodies in FVU and serum were explored. The study demonstrated the presence of neutralizing antibodies in FVU using both pseudovirion-based neutralization assays, with the luminescence-based assay showing higher sensitivity for FVU samples, while the fluorescence microscopy-based assay exhibited better specificity for serum and overall higher reproducibility. High Spearman correlation values were calculated between HPV16-IgG and HPV16-neutralizing antibodies for both protocols (rs: 0.54-0.94, p < .001). Significant Spearman correlations between FVU and serum concentrations were also established for all assays (rs: 0.44-0.91, p < .01). This study demonstrates the continued neutralizing ability of antibodies captured with FVU, supporting the hypothesis that HPV vaccination may reduce autoinoculation and transmission risk to the sexual partner. Although further protocol optimizations are warranted, these findings provide a foundation for future research and larger cohort studies that could have implications for the optimal design, evaluation, and implementation of HPV vaccination programs.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Infecções por Papillomavirus/prevenção & controle , Reprodutibilidade dos Testes , Anticorpos Antivirais , Anticorpos Neutralizantes , Testes de Neutralização/métodos , Genitália Feminina , Papillomavirus Humano 16 , Imunoglobulina G
15.
Front Immunol ; 15: 1352123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562938

RESUMO

Broadly neutralising antibodies (bNAbs) targeting HIV show promise for both prevention of infection and treatment. Among these, 10-1074 has shown potential in neutralising a wide range of HIV strains. However, resistant viruses may limit the clinical efficacy of 10-1074. The prevalence of both de novo and emergent 10-1074 resistance will determine its use at a population level both to protect against HIV transmission and as an option for treatment. To help understand this further, we report the prevalence of pre-existing mutations associated with 10-1074 resistance in a bNAb-naive population of 157 individuals presenting to UK HIV centres with primary HIV infection, predominantly B clade, receiving antiretroviral treatment. Single genome analysis of HIV proviral envelope sequences showed that 29% of participants' viruses tested had at least one sequence with 10-1074 resistance-associated mutations. Mutations interfering with the glycan binding site at HIV Env position 332 accounted for 95% of all observed mutations. Subsequent analysis of a larger historic dataset of 2425 B-clade envelope sequences sampled from 1983 to 2019 revealed an increase of these mutations within the population over time. Clinical studies have shown that the presence of pre-existing bNAb mutations may predict diminished therapeutic effectiveness of 10-1074. Therefore, we emphasise the importance of screening for these mutations before initiating 10-1074 therapy, and to consider the implications of pre-existing resistance when designing prevention strategies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Anticorpos Neutralizantes , Prevalência , Epitopos , HIV-1/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Anti-HIV , Reino Unido/epidemiologia
16.
Front Immunol ; 15: 1353353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571939

RESUMO

As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8+ T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine. Significantly higher neutralizing titers were found after this vaccination compared to the pre-third booster vaccination time point. Further, neutralizing breadth to omicron variants, including BA.1, BA.2, BA.5, BQ.1 and XBB.1, was found to be boosted following bivalent vaccination. SARS-CoV-2-specific CD8+ T cells were identified, but with no evidence that frequencies were increased following booster vaccinations. Spike protein-specific CD8+ T cells were the only responses detected after vaccination and non-spike-specific CD8+ T cells were only detected after infection. Both spike-specific and non-spike-specific CD8+ T cells were found at much lower frequencies than CD8+ T cells specific to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza (Flu). Taken together, these results show that the bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine boosted the breadth of neutralization to newer SARS-CoV-2 variants and that vaccination is able to induce spike protein-specific CD8+ T cell responses, which are maintained longitudinally.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Adulto , Humanos , Anticorpos Neutralizantes , Vacina BNT162 , Linfócitos T CD8-Positivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , COVID-19/prevenção & controle , Herpesvirus Humano 4
17.
MAbs ; 16(1): 2338301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591617

RESUMO

Co-formulation of multiple drug products is an efficient and convenient approach to simultaneously deliver multiple biotherapeutics with the potentially added benefit of a synergistic therapeutic effect. However, co-formulation also increases the risk of heteromeric interactions, giving rise to unique impurities with unknown efficacy and immunogenicity. Therefore, it is critical to develop methods to evaluate the risk of heteromers as an impurity that could affect potency, efficacy, and/or immunogenicity. The most direct strategy to evaluate antibody heteromers is via specific enrichment. However, the fact that antibody heterodimers generated from the co-formulated cocktail share highly similar molar mass and size properties as homodimers natively present in each individual antibody drug product poses a unique purification challenge. Here, we report the path to successful enrichment of heterodimers from co-formulated REGEN-COVⓇ and discuss its potential impacts on drug quality.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais
18.
PLoS One ; 19(4): e0301773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593167

RESUMO

Respiratory syncytial virus (RSV) is the leading viral cause of bronchiolitis and pneumonia in infants and toddlers, but there currently is no licensed pediatric vaccine. A leading vaccine candidate that has been evaluated for intranasal immunization in a recently completed phase 1/2 clinical trial is an attenuated version of RSV strain A2 called RSV/ΔNS2/Δ1313/I1314L (hereafter called ΔNS2). ΔNS2 is attenuated by deletion of the interferon antagonist NS2 gene and introduction into the L polymerase protein gene of a codon deletion (Δ1313) that confers temperature-sensitivity and is stabilized by a missense mutation (I1314L). Previously, introduction of four amino acid changes derived from a second RSV strain "line 19" (I79M, K191R, T357K, N371Y) into the F protein of strain A2 increased the stability of infectivity and the proportion of F protein in the highly immunogenic pre-fusion (pre-F) conformation. In the present study, these four "line 19" assignments were introduced into the ΔNS2 candidate, creating ΔNS2-L19F-4M. During in vitro growth in Vero cells, ΔNS2-L19F-4M had growth kinetics and peak titer similar to the ΔNS2 parent. ΔNS2-L19F-4M exhibited an enhanced proportion of pre-F protein, with a ratio of pre-F/total F that was 4.5- to 5.0-fold higher than that of the ΔNS2 parent. The stability of infectivity during incubation at 4°C, 25°C, 32°C and 37°C was greater for ΔNS2-L19F-4M; for example, after 28 days at 32°C, its titer was 100-fold greater than ΔNS2. ΔNS2-L19F-4M exhibited similar levels of replication in human airway epithelial (HAE) cells as ΔNS2. The four "line 19" F mutations were genetically stable during 10 rounds of serial passage in Vero cells. In African green monkeys, ΔNS2-L19F-4M and ΔNS2 had similar growth kinetics, peak titer, and immunogenicity. These results suggest that ΔNS2-L19F-4M is an improved live attenuated vaccine candidate whose enhanced stability may simplify its manufacture, storage and distribution, which merits further evaluation in a clinical trial in humans.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Humanos , Chlorocebus aethiops , Criança , Vacinas contra Vírus Sincicial Respiratório/genética , Células Vero , Anticorpos Antivirais , Proteínas Virais de Fusão/genética , Vírus Sincicial Respiratório Humano/genética , Anticorpos Neutralizantes , Mutação de Sentido Incorreto
19.
Sci Rep ; 14(1): 8337, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594459

RESUMO

Accessible SARS-CoV-2-specific immunoassays may inform clinical management in people with HIV, particularly in case of persisting immunodysfunction. We prospectively studied their application in vaccine recipients with HIV, purposely including participants with a history of advanced HIV infection. Participants received one (n = 250), two (n = 249) or three (n = 42) doses of the BNT162b2 vaccine. Adverse events were documented through questionnaires. Sample collection occurred pre-vaccination and a median of 4 weeks post-second dose and 14 weeks post-third dose. Anti-spike and anti-nucleocapsid antibodies were measured with the Roche Elecsys chemiluminescence immunoassays. Neutralising activity was evaluated using the GenScript cPass surrogate virus neutralisation test, following validation against a Plaque Reduction Neutralization Test. T-cell reactivity was assessed with the Roche SARS-CoV-2 IFNγ release assay. Primary vaccination (2 doses) was well tolerated and elicited measurable anti-spike antibodies in 202/206 (98.0%) participants. Anti-spike titres varied widely, influenced by previous SARS-CoV-2 exposure, ethnicity, intravenous drug use, CD4 counts and HIV viremia as independent predictors. A third vaccine dose significantly boosted anti-spike and neutralising responses, reducing variability. Anti-spike titres > 15 U/mL correlated with neutralising activity in 136/144 paired samples (94.4%). Three participants with detectable anti-S antibodies did not develop cPass neutralising responses post-third dose, yet displayed SARS-CoV-2 specific IFNγ responses. SARS-CoV-2 vaccination is well-tolerated and immunogenic in adults with HIV, with responses improving post-third dose. Anti-spike antibodies serve as a reliable indicator of neutralising activity. Discordances between anti-spike and neutralising responses were accompanied by detectable IFN-γ responses, underlining the complexity of the immune response in this population.


Assuntos
COVID-19 , Infecções por HIV , Aranhas , Adulto , Animais , Humanos , SARS-CoV-2 , Vacina BNT162 , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Imunoensaio , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
20.
Nat Commun ; 15(1): 3077, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594497

RESUMO

Knowledge is limited as to how prior SARS-CoV-2 infection influences cellular and humoral immunity after booster-vaccination with bivalent BA.4/5-adapted mRNA-vaccines, and whether vaccine-induced immunity may indicate subsequent infection. In this observational study, individuals with prior infection (n = 64) showed higher vaccine-induced anti-spike IgG-antibodies and neutralizing titers, but the relative increase was significantly higher in non-infected individuals (n = 63). In general, both groups showed higher neutralizing activity towards the parental strain than towards Omicron-subvariants BA.1, BA.2 and BA.5. In contrast, CD4 or CD8 T cell levels towards spike from the parental strain and the Omicron-subvariants, and cytokine expression profiles were similar irrespective of prior infection. Breakthrough infections occurred more frequently among previously non-infected individuals, who had significantly lower vaccine-induced spike-specific neutralizing activity and CD4 T cell levels. In summary, we show that immunogenicity after BA.4/5-bivalent vaccination differs between individuals with and without prior infection. Moreover, our results may help to improve prediction of breakthrough infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunidade Humoral , Infecções Irruptivas , COVID-19/prevenção & controle , Vacinação , Vacinas Combinadas , Anticorpos Neutralizantes , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...